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ABSTRACT

The a p p l i c a b i l i t y  of known stochastic programming models and

methods for the so lu t ion  of problems in classical  s t a t i s t i c s  and

probabi l i ty  is shown by a number of examples. These concern testing

of hypotheses , construct ing of tolerance regions , p lanning  of optimal

sampling and the Moran model for the dam.
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SIGNIFICANCE AND EXPLANATION 
—

Mathematical programming deals with optimization under constr~iint~~, e.q.

minimization of costs in manufacturing operations when sources of supply,

machines and manpower are limited . Stochastic programm ing d&~als wi th

mathematical programming problems in which there is uncertainty associated

with the variables and with the constraints ~n the optimization problem . Thus

stochastic programming lies on the borderline between mathematical programm ing

and statistics. However , the connection between the deve1op~ent of these two

sciences is not strong enouqh .

The purpose of this paper is to show how some stochastic programming

methods (developed by the author) can be applied in classical problems of

statistics. Models are formulated for a) construction of statistical

tests, b) construction of tolerance regions , c) optimum allocation in

surveys , d) the dam problem of MORAN . The solution of the above problems

uses nonlinear programming combined with simulation . Evidence concerning

effective solvability of such problems is given in other referenced papers.
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THE USE OF STOCHASTIC PROGRAMMING FOR THE SOLUTION OF SOME PROBLEMS
INJ STATISTICS AND PROBABILITY

Andras Pr ekopa

1. Introduction

Stochastic ~‘rogramming is a branch of mathematical programming because it

deals with handling of mathematical programming problems where some of the

parameters are random variables. At the same time we may consider it to be

part or extension of statistics [4] because problems concerning optimization

of stochastic systems in general can be considered to belong to statistics

in the wide sense. We say in the “wide sense” because in many textbooks

on statistics the definition of this science includes the possibility of

gaining information by experimentation to an extent depending on the

statistician (see e.g. the Introduction of [14]). It is , however , not always

the case concerning the stochastic systems stochastic programming deals

• with . If e.g. we formulate reservoir system design models using past

hydrological data then it is not possible to perform further experimentation

unless we postpone the date of the building of the reservoirs. Some

statisticians do not require that the possibility of gett~ -ig information

by further experimentation should be characteristic for the statistical

methods. Accepting this, it is in fact appropriate to say that stochastic

programm ing is an “extension of st3tistics” .

For about twenty years , however , stochastic programm ing has had a

development almost independent of the parallel development of the statistica l

methods. Hence it- is reasonable to show that some of the stochastic

programm ing models and methods provide useful tools for the solution of

known problems in classical statistics and probability . The purpose of

this paper is to show this possibility by a number of examples.

The possibility of applying stochastic programming in statistics and 4
probability is easy to understand . In fact the decision principles of

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 .



stochastic programming contain idea s taken from classical statistical theories.

Prescribing lower or upper bound for probabilities and find optimal strategy

is a general way of th inking in testing hypothesis. To decide, then observe

and to decide again, appears to be the general decision scheme in the deci-

sion theory of Wald and others . To f ind optima l strategy by minimizing an

expectation depending on some decision variable(s) already appears in the

work of D. Bernoulli concerning the solution of the Petersburg problem [16].

However , the f act tha t similar princ iples can be applied and how they can be

appli ed for large scale problems descr ibed by mathema tical programming

problems wher e some of the parameters are random , was by no means simple

to discover . Because not only the formal application of the statistical

principles was necessary to carry out but the new problems turning out

needed to be numerically solvable mathematical programming problems and these

must have resulted in good applications .

The problems we formulate in this paper are of “chance constrained ” or

in other words “probabilistic constrained” type. This type of stochastic

programming model has been introduced by Charnes, Cooper and Symonds [3)

(the paper was presented at the Econometric Society meeting in Washington ,

D.C., 1953). In our models, however , we frequently impose constraint on

the joint probability for the occurrence of random events which is important

in particular in applications in statistics and probability from the point

of view of model construction. At the same time this makes the numerical

solution of the problem more ccinplicated.

Since extensive application has been done by the author and his

collaborators concerning such stochastic programming problems, evidence

exists that problems of the type we ara going to formulate are numerically

solvable at least in moderate sizes.

—2—



The problems we are going to formulate are of the following t ipe

(1.1) - minimize f(x) subject to

h
0
(x) P(g

1
(x.~~) > 0,.. .,g (x ,~~) > 0) > p

h . (x) > 0, 1 = 1 m
1 =

where x € Rn, g
1
,. ..,g are functions of the deterministic variable x and

the random var iable ~ further h ,..., h are functions of the deterministic1 m

variable x. Problems of the type (1.1) are so ved by the combined use of

nonlinear programming and simulation where the latter is used to determine

function values which are probabilities and gradient values which can be

expressed in terms of probabilities concerning h0 and these probabilities

belong to sets in higher dimensional spaces .

If Problem 1 is a convex programming problem i . e .  the set of feasible solu-

tions is convex and f ( x )  is a convex funct ion , then when solving the problem we

can reach global optimum , otherwise we can only expect local optinium . To have a convex

programming problem it is crucial to know that the constraint h 0
(x )  > p

determines a convex set. General theorems ensure this property . For the

reader ’ s convenience we formulate here two theorems proved in [9) , [10] and

[1], [21 , respectively. For fur ther  references see [131

Theorem 1. If g
1

, . . . , g  are concave functions in all variables in the

ent i re  space and ~ has a logarithmically concave1 probability dens ity

function , then h0 is a logarithmically concave function in the entire space

of the var iable  x .

nonnega tive point fun ction h def ined on a convex set A is sa id to be
logarithmically concave (logconcave) if for every x , y € A and 0 < A < 1,

we have h(Ax + (l-A)y) > [~~(~~)~~
A
[~~(y )] l X

—3—



Theorem 2. I f  x € R
n
, ~ and g 1

, . . . ,g  are concave f u n c t i o n s  in

fur ther  the probabi l i ty  densi ty  f u n c t i o n  f of the random vector ~
-1/n • • q - 2

has the property that  f is convex in R , then h
0 

15 a quasi—concave

function in R
n
.

In some of Lhe problems formulated in this paper we shall  a l low more

than one probabilistic constraints.

function h defined on a convex set A is said to be quasi-concave if
for every x,y e A and 0 < A ~ 1, we have f (Ax + (l—A)y) ~ min [f(x) ,f(y)]

—4—



2. Testing Stat is t ical  Hypothes is  and Construct ion

of Conf idence Region

The simplest example that  can be formulated to illustrate testing

hypothesis is to test the probability distribution P
0 

aga ins t  the alterna-

tive P
1
. For the sake of simplicity we assume that these are discrete

distr ibutions assigning posi t ive  probabilities only to positive integers

and P0
( k ) ,  P

1
(k ) respectively, designate the probabilities belonging to

the integer k .  To construct a test of size less than or equal to the

prescribed probability cz and having maximum power is equivalent to f ind ing

a set of integers S such that

f i r s t  kind error = ~ P~~(k) <
kG S

(2 . 1)
power of the test = ) P

1
(k)  ~~- max

kG S

This problem can be formulated as a ma thematical programming problem

maximize 
~ 

P
l

( k ) x
kkG S

(2 . 2 )  subject to 
~ 

Po
( k ) x

k ~ke S

X
k 

= 0 or 1 all k

The optimal set S is then given by

s = (klx
k 

= l}

Problem (2.2) isknown in the operations research as the knapsack problem and

has a simple solution mentioned already in [7 , p. 64]. We have mentioned the

above problem only in order to present a starting point for the formulation

of more sophisticated tests . We introduce the following notations

H: Set of probability distributions representing a hypothesis.

K: Set of probability distributions representing the alternative .

—5—



X: Vector valued random variable.  On the basis of the observed

value of x we re ject  or accept the hypothesis.

a: Prescribed upper bound for the f irst kind errors .

B: Variable to be maximized , its optimum value is the maximum

value of the minimum power of the test.

S: Cri t ical  region.

The problem is to find S by solving the following problem

maximize B subject to

P ( X  e S~F) < a for every F E H
(2 . 3 )  —

P ( X  e SIF) > ~ for every F e K

In ( 2 . 3 )  on the left hand sides there stand probabilities of the event X € S

using the probabili ty distr ibution F for the random vector x .

Problem (2.3) is too general . We can hardly find a set S this way .

We can, however , restrict the type of the set S and find one in the

restricted category . To this end let us introduce the sets

S
k 

= {xIL
k
(x) > b~ }, k =

= 

k=l 
S
k

where 
~~~~~~~~~ 

are given linear forms of the variable x € R’~ and

b
1
,...,b are real parameters the values of which we want to determine by

an optimization problem . The closure of the complementary of S is a convex

polyhedron for every fixed values of the parameters b
1
,...,b and through

the variation of the parameters only (some of) the faces are shifted (see

Fig . 1) .  ~~j  assume that all probability distributions in H and K are

continuous. This implies that each of them assigns 0 probability to any

hyperplane. Knowing this , we can wri te

—6—
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Figure 1

P ( X  € S I P )  = 1 — P ( L
k

( X )  
~ ~~~~

‘ 
k = l ,. . ., m IF )

for every F e  H .

This is the probabil i ty in the f i r s t  constraint  of Problem ( 2 . 3 )  . The

constraint itself can be wri t ten in the fo llowing manner :

( 2 .4 )  P ( L
k

( X) < b
k l k = 1 , . . .  ,m I F )  > 1 — a for F 6 H

If every F 6 H has a logconcave d e n s i t y  or a dens i ty  sa t i s fy ing  the



condition of Theorem 2, then the set of vectors (b
1
,...,b ) satisf y ing

(4) is a convex set. This is ensured by Theorem 1 and 2, whichever applies .

In most of the cases we cannot expect that the second constraint in

Problem (2.3) in this joint probabilistic constraint will determine a

convex set of the (b
1
1...,b )  vectors. Therefore instead of the single

second constraint we shall use constraints imposing lower bounds for the

single probabilities. These are the following

(2.5) P(L
k
(X) > b~~1F) ~ 

for k = 1,... ,m and F € K

where B1,... ,8 will also be handled as variables. Putting Bk 
= e

k = l,...,m we formulate our problem in the following manner

minimize (y
1 
+ 

~~~~~~ 
+ ‘rm

) subject to

(2.6) P(L
k

(X ) < b~ , k = l , . . . ,m lF ) > 1 - a for F e H

Y
e 
kp (L (x) > bk IF) > 1 for k = l , . . . ,m and F € K

> 0, k = l,...,m

If every probability distribution in H U K satisfies the condition of

Theorem 1 or Theorem 2, then (2.6) is a convex programming problem. Minimizing

in -y
r k

k=l

instead of the sum of y
1
,...,y , the convex programming character of the

problem will not be disturbed .

Similar problem can be formulated for the construction of confidence

region. In this case we use the first constraint of Problem (2.6), impose some

other constraints on b
1
,...,b (these can be e.g. lower and upper bounds)

and minimize a certain function of the variables b ,. ..,b . Thu s we are1 m

lead to the following problem :

—8—

— --~~~~~-~~~ -.~ -_~~~~~~_I~~ - -



minimize f(b) subject to

(2.7) P(L
k
(X) < b~ , Ic = 1,.. .,mIF) > 1 — a for F 6 H

h .(b) > 0, i =
1 =

If every F in H satisfies the condition of Theorem 1 or Theorem 2, then

the f i rst constraint determines a convex set of the b vectors . Then , if f

is convex and h
1.
....,h are concave or quasi—concave , Problem (2.7) will

be a convex programming problem . The confidence region will be the inter-

section of the sets S
1
,...,S using the optimal b

i1
~~~~~

b
m 

produced by

Problem (2.7). The above notion of a confidence region is slightly different

from the conventional one . The reason is that  we work with general sets of

probability distributions and disregard the parameter . It is not difficult ,

however to specia lize our problem formulation for the case when we have

parameter and to derive this way confidence region in the conventional sense

for the unknown parameter .

I..



3. Construction of Tolerance Regions

Let F be the probabil ity d istribu tion of the random vector

X = (X
1
,...,X ) .  The random set S is a B—c.~ntent tolerance region of

confidence level  y if the following inequali ty holds

(3.1) P(f dF > B)  > y
S

The random set S is constructed on the basis of a sample taken from the

population F.  The probability stand ing on the lef t  hand side in (3.1) is

called the coverage of S.

Instead of a general formulation of the construction of a tolerance

reg ion based on stochastic programming , we show th e principal idea on a simple

problem.

Suppose we want to construct tolerance region of the form S = (0,1(x)

for an exponential distribution with unknown parameter A where x is the

empirical mean of a sample of size n taken from this population and K

is a number to be determ ined so that i b should be the smallest number

satisfying (3.1) with given B and y. In our case (3.1) can be written

in the following manner

—A Kx
(3.2) P(l — e > B) > y

Let us introduce the notation y = Ax. The probability distribution of y

is independent of A and ny has a standard gamma distribution with parameter

n i.e. ny has the following probability density function:

—z
e 

if z > 0
(n—i)

and f(z) = 0 otherwise. The inequality (3.2) can be rewritten as follows:

(3.3) P(ny > log 
~ 

> y . 

-~~~~~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ TI. ..



It  wi l l  be more convenient  to us E the  new va r iab le  L = ~~
- . Puttir: K =

in (3.3), our problem will be to find the largest L satisfying (3.3).

Assume now that we have m independent exponentially distributed random

variables with parameters A
1 

A , respectively. Let x
1
,...,x denote

the sampling expectations cor respond ing to ind ependent samples of sizes

taken from these populations and y. = A x ., i = l,...,m. For

the construction of a tolerance reg ion of the form (X means Carta sian

product) :

(3.4) S = (0, 
~~~~~ 

x (0, 
L
2
x
2
) x ... x (0, 

~~~

— x~ )

it is reasonable to choose the following decision principle

maximize (L + ... + L ) subject to
1 in

(3.5) 
i=l 

P(n .y. > L ,n . log 
1 — B~ ~

a . < L . < b ., i=l, ...,m ,
1 =  1 =  1

where a
1
,... ,a ;  b

1~~~~•~
b
m 

are prescribed bounds. Since a standard gamma

density function with parameter greater than or equa l to 1, is a logconcave

point function , it follows from Theorem 1 that the constraining function i.e.

the function standing on the left hand side of the first constraint of

Problem (3.5), is a logconcave function of the variables L
lI
~~~

•
~
L
m~ 

Thus

(3.5) is a convex programming problem .

It is not necessary to restrict ourselves to the case of independent

random variables . Consider e.g. the random variables

= 
~~~

— (z
1 

+ z
2
) ,

x
2 ~~

— (z
1 
+ z

3
) ,

— 11—
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where A
1
,A
2 

are positive (unknown) constants and z
1
,z
2
,z
3 

are standard

gamma distributed random variables with known parameters 
~l

’
~~2

’
~~3~ 

If

we take three independent samples concerning z
1
,z
2
,z

3
, all of them of size

n and use the notations z
1
,z
2
,z
3 

for the sample means, f urther

= A Z
1

, y~ = Az
2
, y

3 
= Az

3
, then we can formulate the following stochastic

programming problem

maximize (L
1 
+ L

2
) subjec t to

n ( y
1 
+ 

~
‘2~ 

> nL
1 

log 
~ B

(3.6) P > y

n(y
1 

+ y
3
) ~ nL~ log 

1 — B

a. < L . < b ., i = l ,2 .
1 =  1 =  1

The random variables ny
1
,ny

2
,ny

3 
are independent and they have standard

gamma distributions with parameters ni~1
,n~2

,ni~3
. If n~~ > 1, n~ 2 

> 1,

flt~3 
> 1, then ny

1
,ny

2
,ny

3 
have a logconcave joint density . Hence by

Theorem 1, the constraining function in the first constraint of Problem (3.6)

is a logconcave function of the variables L
1
,L
2
. Thus (3.6) is a convex

programming problem. The tolerance region will be that special case of

(3.4) where m = 2 and L
1
,L
2 

are the components of an optimal solution

of Problem (3.6).

—12—
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4. Optimum Allocation in Surveys

A well—known application of nonlinear programming is to find the number

of elements in the different strata concerning stratified sampl ing from a

finite population. First we formulate this problem that is a deterministic

one , then using it as an und erlying deterministic problem , we formulate a

stochastic programming problem . Let us introduce the following notations:

L Number of strata

Nh Elements in stratum h

N = 

h 1  
N
h 

Total number of elements in the population

Unknown number of elements to be chosen from stratum h
_ 1 1

X
h

_ 
N
h
’

W
h 

= Nh/N

Estimate of the j th variable

r Number of variables to be estimated

S~ Var iance of the j th  variable in stratum h

V . Variance of the estimate y.
J J

2 2
a . W S
hj h h j

d. Prescribed numerical upper bound for V~

C
h Unit  price of sampling from stratum h

It is well-known that the variance V~ can be expressed in the follow-

ing manner

2 L
V = a •X , j = l , . . . , r
~ h=l 

hjh

To f ind n
1
, .. . , n , we formulate a nonlinear programming problem . In order

L

( —13—

— . . .~ x—r r~~~fl~~~~~~~~ - -



to have linear constraints, we prefer to use the variables X
l
l.. .I X

L
. Since

= 1/(X
h 

+

our problem reads as follows

r 1minimize L C~/(X~ + —)  subject to
h=1 h

~ 
ah .xh 

< d ., j =

h=l

0 < X
h 

< 1 - -
~~
- , h = l,...,L
h

In this problem the constraints are linear and the objective function to be

minimized is convex . Hence (4.1) is a convex programming problem .

Assume now that within the strata we have such populations the variances

of which are random variables. Then we can impose a probabilistic constraint

on the first p constraints of Problem (4.1) and formulate the following

new prob lem

mi nimize 
h=1 

C
h
(x
h 
+ ~~~) subject to

L

~ 
a)~.X~ 

< d ., j = 1,. ..,r) > p
h=l ~ 

— j  —

(4.2)

0 < X
h

< l
~~~~~~~ 

h = l ,...,L .
N
h

We may take a small sample before and use the aposteriori distribution

of the coefficients a~~. given the result of the small sample. In this

case the structure of the problem (4.2) remains but we have new probability

distribution for the random variables in the first constraint.

Problems of the type (4.2) are frequently nonconvex . Here the

coefficients of the unknowns are random in the probabilistic constraint.

—14-
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Some result concerning proqrammux i under probabilistic constraint with

random technology matrix are ~resented in [5), 11 1J . Accord ing to these

resul ts  s t i l l  in many cases ( 4 . 2 )  will be a convex proqramming problem .

—15—
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5. An Example Concerning Stochastic Processes

We consider the Moran model for the dam [8) and see how stochastic

programming can improve this model .

Time will be subdivided into discrete periods and we number them by

1,2 Let K be the capacity of the dam . Assume that in the

beginning of Period i an input occurs : out of a total input x . that

amount for which we have freeboard , f i l l s  up the reservoir to that extent

and the remaining water overflows . After this, an output (release) occurs.

We release an amount equal to M if at least that amount is available and

we release the total amou nt from the dam if the available ~mount is smaller

than M . Let z. deno te the water con tent of the reservoir at the end of
1

Period i. The following recuisive relation holds true

(5.1) z. = max [min (z. 
1 
+ x ., K) — M ,0], i = 1,2,...

where z
0 

is the initial water content of the reservoir . All demands will

be met in the course of the f i r s t  n per iods if and onl y if the following

relations hold :

(5.2) z. = min ( z . + x ,K) — M > 0, i l,...,n
1 i—i i =

If x
1
,x
2
,.... are independent, identically distributed random variables ,

then z
1
,z
2
,... form a Markov chain. Under mild conditions we have ergodicity

(8] and using the stationary limit distribution , a reservoir capacity design

principle can be formulated so that we put

(5.3) P(min(z .
1 
+ x .,K) > M) = p

where p is a prescribed high probability .

We now drop the condition imposed on the random variables

and assume only that concerning a finite subsequence x
1
, . . . ,x , the

—16—
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condition of Theorem 1 or Theorem 2 is fulfilled . We also drop the condition

that the amount of water to be released is constant and does not depend on

the period . Moreover , we shall introduce the water quantities M
1
1. ..,M

to be released in the subsequent periods as unknowns. In order to obtain

the recursive relations for this case we only have to wr ite M . instead

of M in (5.1). Wri~~ing M . instead of N in (5.2) we obtain a necessary

an~1 sufficient condition that all demands can be met in the course of the n

periods.

For the determination of the capacity K and M
1
,...,M we formulate

the following stochastic programming problem :

m in imize [c (K) — c M - — c M ] subject to
1 1  n n

(5.4) P (min (z.
1 
+ x ,,K) — M . > 0, i = l ,...,n) > p

0 < K <

0 < M . < M . , i l ,...,n ,
= 1 = iO

where p is a prescr ibed h igh probability, K
0
,M .0, i = 1, . . . ,n are given

constants, c(K) is the build ing cost of the reservoir and c ,...,c1 n

are the benefits of water units in the subsequent periods. We can e.g.

assume tha t win ter moisture f ills up completely the reservo ir thus Periods

l,...,n are some few months in the spring , summer and fall. If the reservoir

serves for 50 years, say, then the building cost should be subdivided into

50 equal parts in a discounted form and use only the first year part as

c(K) to have a right economic formulation of the problem . This is, however ,

not a central point of our present discussion .

Problem (5.4) is a convex programming problem if c(K) is a convex

function and the joint distribution of x
1
, .. . ,x sa t isf ies the condition

of Theorem 1 or Theorem 2.

p 
—17—
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For further reservoir system design models based on stochastic

programming the reader is referred to (101 , [12).
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